Session III: Power & Energy Architecture for NZE

United States Army Corps of Engineers
Net-Zero Energy (NZE) Installation & Deployed Bases 2-Day Workshop

Bob Lasseter University of Wisconsin-Madison

> Colorado Springs, CO 3 February, 2009

Power & Energy Architecture Issues

- Full spectrum of applications from whole campus to forward operating bases.
- Loads from ultra low (residential) to very high (maintenance/industrial).
- Creation of adaptable and modular building blocks for both thermal and electrical architectures
- Optimize the use of onsite renewables.

electricity/ NZE systems

electricity and fuel can provide for NZE

basic energy architecture for all systems

University of Wisconsin-Madison

February 2009

Key components of a Power & Energy Architecture

•geothermal (permanent

vs. temporary facilities)

thermal

University of Wisconsin-Madison

thermal

storage

Power & Energy Architecture Issues

- Full spectrum of applications from whole campus to forward operating bases.
- Loads from ultra low (residential) to very high (maintenance/industrial).
- Creation of adaptable and modular building blocks for both thermal and electrical architectures
- Optimize the use of onsite renewables.

Meshed Microgrid (building, site, forward operating base...)

University of Wisconsin-Madison

February 2009

AEP/CERTS Microgrid test site

60 kW Sources

Static Switch

Concepts were fully tested at AEP/CERTS test site:

http://certs.lbl.gov/certs-derkeymgtb.html

University of Wisconsin-Madison

February 2009

Loads

commercial microgrid source

Hybrid Power/Energy Module

Hybrid Energy Module

Trade-offs in use and rating

Energy sources

- Electrical & thermal
- fuels/bio-fuels

Loads & storage

- electrical
- thermal

Operation of the microsource

- Microsource either operates at its optimal efficiency or is off.
- Operates when thermal and/or electrical storage is below its threshold energy level.
- Storage is sized to minimize the operation of the microsource related the available reneables.

Microgrid inverter interface

CERTS Microgrid controller

- Autonomous (No central controller)
- Plug & Play model (promotes CHP & reduces site engineering)
- Peer-to-Peer model (no master element)
- Scalable components

Electrical system issues

- Each DER unit is a voltage source.
- Multi-unit stability is insured through voltage vs. reactive power control.
- Communication between components is through *frequency*.
 - DER output control uses power vs. *frequency* droop.
 - Intelligent load shedding on low frequency.
 - Automatic re-synchronizing using *frequency* difference between the island and Utility network.

Modular Architecture Issues

Electrical

- integration and control of storage and pv in the hybrid energy module
- load control & building electrical infrastructure issues

CHP

- efficient use of electrical and thermal sources
- serving different thermal loads (heating and cooling)
- influence of electrical and thermal storage

Biofuels

- feasible on-site biofuels/gas
- available energy relative to waste streams & process rates
- modular issues

Thermal

- heating and cooling issues
- storage and modular architecture issues
- integration of passive solar, geothermal and CHP

Modular Architecture Issues

Electrical Prof. Tom Jahns University of Wisconsin

- integration and control of storage and pv in the hybrid energy module
- load control & building electrical infrastructure issues

<u>CHP</u> Clifford Haefke Midwest CHP Application Center

- efficient use of electrical and thermal sources
- serving different thermal loads (heating and cooling)
- influence of electrical and thermal storage

<u>Biofuels</u> Chris Zygarlicke Energy/Environmental Research Center

- feasible on-site biofuel/gas
- available energy relative to waste streams & process rates
- modular issues

<u>Thermal</u> Dr. Stephan Richter GEF Ingenieur AG

- heating and cooling issues
- storage and modular architecture issues
- integration of passive solar, geothermal and CHP

